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Influence of boundary slip on the optimal excitations in thermocapillary driven spreading
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Thin liquid films driven to spread on homogeneous surfaces by thermocapillarity can undergo frontal
breakup and parallel rivulet formation with well-defined wavelength. Previous modal analyses have relieved
the well-known divergence in stress that occurs at a moving contact line by matching the front region to a
precursor film. Because the linearized disturbance operator is non-normal, a generalized, nonmodal analysis is
required to probe film stability at all times. The effect of the contact line model on nonmodal stability has not
been previously investigated. This work examines the influence of boundary slip on thermocapillary driven
spreading using a transient stability analysis, which recovers the conventional modal results in the long-time
limit. In combination with earlier work on thermocapillary driven spreading, this study verifies that the dy-
namics and stability of this system are rather insensitive to the choice of contact line model and that the leading
eigenvalue is physically determinant, thereby assuring results that agree with the eigenspectrum. Modal results
for the flat precursor film model are reproduced with appropriate choice of slip coefficient and contact line
slope.

DOI: 10.1103/PhysRevE.70.046309 PACS nuni®)erd7.15.Fe, 47.20.Dr, 47.54r, 47.62:+q

[. INTRODUCTION moving contact line, which arises from the conventional no-
S ) slip boundary condition at the solid surface. Although both
Thin liquid films driven to spread over a smooth and gjin and precursor film models for coating flows driven by a
chemically homogeneous surface provide an interesting sy$soqy force have been examined via a modal stability analysis
tem in which to study the evolution of instabilities at a mov- [5) “the literature does not contain stability analyses of slip
ing front. Experiments have shown that both body forcesmggels for thermocapillary driven films. Expanding the work
like centrifugation and gravity, and surface stresses, due tg, ihe first part of this study4], the present work incorpo-
thermocapillary forces or a stream of gas directed along thgyias 4 slip boundary condition at the solid surface and ex-
film interface, can cause a flow transition from a uniform gmines the effects of this model on the transient dynamics
front to an array of parallel rivulets. A simple example of this g amplification of optimal disturbances to the spreading
instability can be seen in a paint film streaming down & Versijm_ The non-normality of the linearized disturbance opera-
tical wall. During the past several years, there has been sigy js investigated through examination of the temporal evo-
nificant work in examining disturbance amplification in those|tion of the maximum disturbance amplification and plots of
systems using a generalized linear stability analysis suitablgye hseudospectra. The results indicate that the transient am-
for non-normal systems. Some systems appear to undergfification of disturbances is relatively unimportant for ther-

significant transient growth while others essentially reprog|ly driven films and that the stability predictions of differ-
duce the predictions of normal mode analysis. Because thent contact line models agree quantitatively.

instabilities occur in the vicinity of the moving contact line,
more attention is being focused on the choice of boundary Il. GOVERNING EQUATIONS
conditions used to relieve the usual stress singularity caused

by the incompatibility of the no-slip condition with motion . : o o R i
of the contact line. It would therefore be useful to understancﬁjr.'ven film W'.th'n the lubrication approxmau_o(mcludmg
precisely how the choice of contact line model affects thesrl]Ip alt the SOI'Id surfa%dqas been derived plrewousﬂgﬂ, bl?'t f
spatial and temporal evolution of the film profile and howthe S '? ”?Odf? I\(/jvas di er(ejnt, ar?d (;'O detai edfeﬁamlnatlor_\ 0
this profile in turn influences the transient and asymptotict eve oqty I€ld was made. T € erivation O.t € governing
stability of driven films. partial differential equatio@PDE) is therefore given in some

Previous studies of thermocapillary driven flgtv-4] uti- detail below. Consider the thermocapillary driven flow of a

lized a precursor film to relieve the stress singularity at thé\l_evytoman !|qU|d film of density and viscosityu. The lig-
uid is supplied from a source at constant flux, and a constant

thermal gradient is applied along the substrate such that the
_ _ _ ~ temperature decreases in the direction of spreading.
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Fo_dp_ I, s Dh
M_:_:__(szh)a — = T
a2y oy ot Wz, (5)
P whereD/Dt denotes the material derivative. Integrating the
= =0, (1) incompressible form of the continuity equation with respect
d to z and substituting w|,-;, from Eq. (5) yields the interface
where (u,v,w) are the components of the velocity in the equation
streamwise, transverse, and normal directions relative to the oo (F 9 [
substrate(x,y,z) are the components of a Cartesian coordi- E + P udz+ a_yf vdz=0. (6)
0 0

nate system in the respective directions, anis the film
thickness. The boundary conditions are slip at the solid surSubstituting Eq(4) into Eq.(6) yields a single partial differ-
face, based on the model proposed by Greenspan for spreaghtial equation that governs the evolution of the film thick-

ing drops|[7], ness profile in the inner region near the contact line where
_ effects of surface curvature are important:
a Jdu
Umo=ts= = | H oA 1oy, oo
3h 72| e el R 4 -[—(h3+ﬂ'&h)V(7V2h)]=0-
A XL 2u 3u
| @ v @ (7
Vlz=0=Us= —=—| . . . . . .
=0T 3h 92 0 Equation(7) is converted to dimensionless form by intro-

ducing the transformations
and prescribedconstant shear stress at the vapor-liquid in-

terface, X:_)_( §:3_/
I’ I’
aul _dy_
Fol g ax 7 BT .
=—, t=—.
he I/u. ®
M@ _=0. (3  The dynamic capillary length= hC/(3C'a)1’3:('2yOh§/37 s
IZ | z=h with Ca=uu,/ y the capillary number, is obtained by balanc-

, L ing the thermocapillary force against viscous and capillary
The slip coefficient is represented By Greenspan suggested ¢orces. The characteristic Marangoni velocity of the ther-
that @< 10" m? but gave no rigorous justification for this mally driven flow is given byu,=h.r/2u, whereh, is the

choice. The resulting expressions for the streamwise angdharacteristic film thickness far from the leading edge where

transverse components of the velocity are capillary effects are unimportant. The valyg is evaluated
1 2 ~ ~ at the same location d%
u= __(Wzﬁ)(_ ~hz- 2) N T_Ci Assuming that the variation of surface tension with tem-
M OX 2 M 3uh perature makes a negligible contribution to the pressure gra-
dient in the inner region of the flow, the dimensionless form
-1 = 2 . = of Eq. (7) is
o= OV g hem o) @ h— (W) + V - [(h+ ah) V V2h] =0, 9)

Although a singularity exists in the streamwise velocity atWhereV=xd,+{J, and subscripts denote partial differentia-
th tact I the sh . d m!ﬁg}udz) I tion with respect toy, ¢, or t. The physical boundary condi-
v et o, e s s it et T b e s

; e e > = h =0 ibed tact sl =C d
slip coefficient, the continuum model loses validity as Xcu), hixc)) =0, prescribed contact slog(xcy)=Cs, an

2 i . : —a flat film far from the contact lineh— 1 andh,,,—0 as
h— 0 well before the singularity becomes important. Th|sXHm_

singularity is not present in flow driven exclusively by a

body force. An applied surface shear stress acts on an areal lll. BASE FLOW

element of fluid and is incorporated into the velocity profile A traveling-wave solution for the base flow that is con-
through a boundary condition. A body force acts on a VglumGStant in the moving framé= y+ct can be found by substi-
element of the fluid, and the resulting additiongl powehof tuting h(x, Z,t)=ho(€)+ehy(&,,1) in Eq. (9), wherec=1 is

in the shear stress at the solid surface negatebthin the  the wave speed ang<1. The position of théunperturbe

slip model. contact line is given by=0. Integrating the resulting ordi-
The kinematic condition at the material, vapor-liquid in- nary differential equationlODE) once and applying the
terface is expressed as boundary conditions yields
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FIG. 2. Comparison of the base-state profiles from the slip
model with «=0.01 andC¢=1.2035 and the precursor film model
with b=0.01. The parameters were chosen such that the maximum

hy—1 amplitude of the capillary ridge is 2.051 89, and the two curves

Pogee = m’ (10 cannot be distinguished on the scale of the plot. The inset shows an

0 enlarged view of the region near the contact line.

FIG. 1. Numerical solution of the dimensionless, steady-state
profile hy(£).

subject to the conditionly(0)=0, hy(0)=C,, andhy— 1 as
&—o0. Equation(10) is solved numerically using a standard
Runge-Kutta shooting method.

precursor film model witthb=0.01 in Fig. 2. The parameters
were chosen so that the maximum amplitude of the capillary
ridge is the same in either model and so that the contact line
regions are similar, and the profiles cannot be distinguished
A. Steady-state solutions to base flow on the scale of the plot. Such agreement is expected because
. . . . . the third order ODE’s governing the base flows for the slip
Typical solutions for the height profile of the spreading y,qqe| and flat precursor film modgl] become identical as
film near the advancing front are shown in Fig. 1. Represen;,_. g andb—0. As shown in Fig. 2, strong agreement is
tative values of the slip coefficient are chosen to corresponditained even at finite values afandb.

to characteristic film thicknesses of a few microns, which are
typical of many experimental investigations of thermally B. Stability analysis of steady-state solutions

driven films. The contact slope is also varied from 0.10 to  |n order to determine the stability of the spreading front to
1.00. Smaller values dis have only a small influence on the g spidal disturbances in the transverse direcpig. (9)
height profile and are not shown. The maximum amplitude ofg perturbed about the traveling-wave solution by the impo-

the capillary ridge increases with decreasing slip and increasstion of two-dimensional disturbances of the form
ing values of the slope at the contact line. For an appropriate

choice ofa andC4 that produces the same maximum ampli- hi(&,4,1) = G(¢,D)expliqd), (11

tude of the capillary ridge as a precursor film of dimension-where the dimensionless wave number is defined=als,/,

less thicknesd, the base-state height profiles for the slip with k, the corresponding dimensional wave number and
model and flat precursor film model are essentially indistinthe scaling appropriate for the inner region as defined in Eq.
guishable. The base-state profile from the slip model with(8). The resultinglinearized equation governing the evolu-
a=0.01 andC4=1.2035 is compared to the profile from the tion of the disturbance in the streamwise direction is

9G _ (a+3n)(2hg+a-hhge 5 Bhghg(hy—1) - )
T {Zhog (h(2)+ )? ad’hy—q'hy h§+ o G+ | =1+ 25+ 3g9°hghos + aqhy,
(a+3h3)(hy— 1)
- h(2)0+ ao Gg + (2aq2h0 + Zqzhg)Ggé + (_ ahog - 3hgh0§)G§§§ + (_ aho - hg)Gg:gg:g (12)
I
This equation is subject to the decay conditi@s,— 0 as G, - (Cs+ aqzhogg)G +aC G, =0, (14
¢— oo since the perturbation should not affect the outer re-
gion of the flow. At§=0, the boundary conditions are which ensures that continuity is satisfied at the contact line.
hogeG — CG; =0, (13) This last boundary condition can be derived by linearizing a

kinematic condition describing the motion of the contact line
which is derived from a Taylor series expansiorhadindh,  or by evaluating Eq(12) at =0 and using Eq(13). Dis-
abouté=¢¢ [5], and cretizing Eq.(12) in space using a central difference scheme
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yields a system of equations that can be expressed in operaf S and its inverse can be much greater than unity. Several

tor form as orders of magnitude of transient amplification could occur
and induce nonlinear effects, thereby invalidating the results
G =AG. (15) of modal analysi§13].
ot Since expAt)=Sexp(tA)S™, in the limit t— o the first

f column ofS and the first row o5t exponentially dominate
with  amplification factor exfRe(A;4t)]. Applying
Schwartz’s inequality reveals that the normalized initial con-
dition that produces the maximum growth over tinis the
leading eigenvector oA, which is the leading adjoint ei-
IV. INVESTIGATION OF NON-NORMALITY genvector ofA. Formally, the spectral abscissaff a(A), is

A. Linear stability theory equal to the growth abscisgdA) [15]:

The traditional approach to hydrodynamic stability pro- a(A) = sup Re(z) = R \p(A)]= ¥ (A) = limt~Hn|je”],

ceeds through modal analysis, which assumes exponential zeA®) e

time dependence and reduces the analysis ofExjto solv- (20

ing the eigenvalue problemy; G=AG for the eigenvalueg;

of A. Although accurate for flows governed Imprmal op-

erators[8], this traditional analysis can break downAfis

non-norma) in that A does not commute with its adjoint or,

equivalently, does not have an orthogonal set of eigenvec-

tors. The adjoinA™ of A is defined by(u,Av)=(A'u,v) for

all u, v in the domain ofA, where(-, -) denotes the inner To determine the evolution of an optimal initial state into

product. its final state at time, the singular value decomposition of
The results of modal analysis are always valichifis a ~ €XPtA) is calculated according i3]

compact normal operatdi9]. For a non-normal operator, _ t

however, traditional modal theory only predicts the eXH(tA) =UZVY, 29

asymptotic behavior of solutions to the linearized equation asvhere the columns of the unitary matri represent the

t— oo and may prove inaccurate on the time scales of physieomplete set of initial states and the columns of the unitary

cal relevance. Investigations of the linear stability of distur-matrix U are orthonormal basis vectors that span the range

bances governed by non-normal operators must thereforgpace of final states. The diagonal matBxcontains ele-

proceed beyond simple modal analysis to ensure the physicalentso; that describe the growth of each corresponding ini-

The linear autonomous matrix(¢) that acts on the state o
the systeni5(t) contains the elements obtained from the dis-
cretization and is real, nondefective, and non-normal.

which demonstrates that the results from modal analysis are
recovered ag— oe.

C. Optimal perturbations

relevance of the resul{40-13. tial state during the specified time interval. Note that the
singular value decomposition must be calculated for each
B. Optimal perturbation growth time at whichU, 3, andV are sought. For an initial pertur-

_ _ _ ~ bation Gy==4a,V; with 3|a?=1, applied at timet=0, the
The solution to Eq(15) is the operator exponential acting corresponding evolved state at time is G=3ao;U;
on the initial conditionG: =exp(tA)G,. The vectorsV;, which form the columns of/,
G(t) = exg(tA)G.. 16 are ordered by _growt_h; the optim_al_perturba_tipn at a specified
® HtA)Go (16 time, Vo=V, is defined as the initial condition that gener-
The maximum amplificatiorr,,, Of any initial perturbation ates the maximum growth over the time interal This

over timet is [13] maximum growth is defined by the leading singular value
g Tmax=eXptA)|. Since all experimental studies of ther-

Tmadt) = sup-—- = |exp(tA)|, (17) mocapillary fingering phenomena have demonstrated the

Go#0[Goll predominance of a single unstable wavelength, the initial

where the Euclidean norm is used. A nondefective marix states e_xamined in this study are characterized by monochro-

has the similarity transform matic disturbance¥ (¢,q). o o

The maximum possible amplification at any time is at-

A=SAS? (19 tained by the optimal initial disturbance calculated for that

time. Ast—, the evolved state,,Uq, corresponding to
the optimal initial condition with a wave number that induces
the largest growth over all time, evolves into the eigenfunc-
tion that describes fingered growth in the spanwise direction,
exp(Ait) < |exptA)| = [|SexptA)S™Y| < ||9]|IS Yexp(Aiqt), H(¢). The optimal initial disturbanc¥,,(t— ) in this long-
(19) time limit (at which the most unstable mode dominates-
ymptotes toH'(¢), the eigenvector of the adjoint linearized
where Ay, is the leading entry ofA. If A is normal,Sis  operator, which is the initial condition that optimally excites
unitary, and|exp(tA)|=exp(Ayst) Ot. If A is non-normal, the most unstable modeSlight differences may occur at the
however, the eigenvectors are not orthogonal, and the normnds of the domain due to the imposition of the physical

where S is the matrix whose columns are the normalized
eigenvectors oA in order of growth rate and is the diag-
onal matrix of the associated eigenval(ig4]. It follows that
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boundary conditions on the adjoint eigenvegt&or normal 0.2

A, the optimal initial condition for any time is simply the 0.0, P—

normalized leading eigenvector. ’
B 2]

«=0.10, C=0.10

D. e-pseudospectrum 044 -eeen =0.01, C=0.10

Determining the magnitude of the resolvefa| —-A)™, 06, e N\
wherel is the identity matrix, for a range dfe C provides ' R N
useful information regarding the behavior of the matfix 08 . . ' ' k
(and the operator of which it is the discrete representation 00 02 04 q 06 08 10
that cannot be determined by merely computing the eigen-
values. For eack=0, thee-pseudospectrum dk is defined FIG. 3. Dispersion curveg(q) from eigenvalue analysis corre-
as[15] sponding to the base-state profiles shown in Fig. 1.

— . -1 -1
AdA) ={z e @ -A)H = €7, (22 suo;j|exp(tA)|| = el S,Aug)Re(z). (29
t= ze A

If A is normal, themA (A) (in the two-norn) is the union of

discs formed by the set of points fhwithin a distances of This bound is relevant if the spectrum is confined to the left
the spectrum ofA, A(A). The e-pseudospectrum may be half-plane since a lower bound on the transient growth can
much larger ifA is non-normal. Examination of plots of duickly be found by determining how far the pseudospectra
AJA) gives an indication of the extent of non-normality in a €xtend into the right half-plane. If the spectrum extends into
matrix and thus of the physical relevance of its eigenvalueshe right half-plane, then this bound is not useful since the
In any norm, difficulty arises if the basis of eigenvectors is ill 9roWth becomes infinite &s— . Other bounds can also be

conditioned. If an arbitrary vector is expressed terms of th&onstructed15,16.

eigenvector basis, the expansion coefficients may be ex- V. LINEAR STABILITY RESULTS
tremely large relative to the magnitude of the vector itself.
The relevant physics of the system may then be dominated A. Eigenvalue analysis

by the evolving pattern of cancellation of these coefficients The pehavior of solutions of Eq12) at long times is

rather than by the behavior of individual eigenvalues. Stabilyetermined by seeking an exponential solution of the form
ity predictions based on the eigenvalues could therefore be

unreliable. An equivalent definition of the pseudospectra is G(&1) =H(§exp(Bt), (25)

[15] whereB denotes the disturbance growth rate. The valug of
_ . with largest real part is the leading eigenvalueAqf A4;.
AdA)={ze Lize AA+E) Equation(15) becomesBH=AH, and the eigenvalues and
for someE with||E|| < €}. (23)  eigenfunctions ofA(¢) are calculated using theig function
_ o _ . in MATLAB 5.3. The dispersion curve8(q), corresponding to
This definition of thee-pseudospectrum in terms of eigenval- the four base state height profiles shown in Fig. 1, are plotted
ues of perturbed matrices reveals that the pseudospectra CgNFig. 3. There is a band of unstable wave numbersg0
be used to assess the susceptibility of eigenvalues to pertuksg 55 with the maximum growth rate 0cCUrring @,y
bations(and thus give an indication of the accuracy of the~ 35. The growth rate of the most unstable wave number
eigenvaluep o increases as the slip coefficieatdecreases or the contact
If contours fore<1 are visible on arD(1) scale, themA  sjopeC increases, both of which correspond to an increase
is highly non-normal. The eigenvalues in that region of thejn the amplitude of the capillary ridge. The largest eigen-
complexz plane are nearly linearly dependent and can interyalue for the base flow witlx=0.01 andC,=1.00 is nearly
act. These eigenvalues are also highly susceptible to pertugs |arge as for the base flow with=0.001 andC=0.10.
bations, as indicated by E¢R3). They may also be difficult The dispersion curves for the slip model with=0.10,
to compute accurately and are of dubious physical relevanCQszo_lo; «=0.01, C,=1.00; anda=0.01, C;=1.2035 are
If such contours fore<1 are visible around the leading piotted with the dispersion curves for the flat precursor film
(least stablpeigenvalue, then stability predictions based onmodel withb=0.10 ancb=0.01 in Fig. 4. For an appropriate
the eigenvalues may be inaccurate. Further analysis anghoice of parameters, the unstable portions of the dispersion
computation oflexp(tA)|| is warranted. If contours for small curves overlap almost completely. Although the base state
€ are not visible andA appears close to normal, then the profiles for «=0.01, C,=1.2035, andb=0.01 are nearly
eigenvalues should be accurate and sufficient to assess tientical, as shown in Fig. 2, the slip model yields slightly
stability of the physical system. larger eigenvalues for the unstable wave numbersqO
The pseudospectra of an operator or matrix also can be:0.55, so the dispersion curves do not overlap. While the
used to calculate bounds gexp(tA)||. A lower bound on the  base state foir=0.01,C.=1.00 has a slightly lower capillary
norm of the matrix exponential, derived from the Laplaceridge, the dispersion curves for these parameter values al-
transform and stated as part of the Kreiss matrix theorem, imost entirely overlap those fdsr=0.01 for the range of
given for anye>0 by [15] shown in Fig. 4.
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FIG. 4. Comparison of dispersion curves from the flat precursor
film model with those from the slip model. The portions of the 44
curves corresponding to unstable wave numbers overlap almost
completely for an appropriate choice of parameters, although there

=,]
is some deviation for large. 3
[-%
3 |
B. Nonmodal analysis £ 0™
The behavior of solutions to E¢L2) at any time is deter- 2] . : :
mined by examining the time dependencd@ip(tA)| in the 0 10 20 30 40
Euclidean norm. The evolution of an initial disturbance to its (b) time
state after an arbitrary timels also investigated. An empha- 6
sis of this investigation is the reason for which the traditional —— =000 ~---g=0.50

modal description of linear stability yields such accurate pre-
dictions for the non-normal disturbance operator that governs
thermally driven, thin-film flows.

1. Amplification ratio

MATLAB 5.3 was used to calculate matrix norms and sin-
gular value decompositions. The number of grid points used
to determine the discretized elements comprising marix
ranges from 1000 to 4500 points. Experimental results pub-
lished in the literatur¢17—19 demonstrate rivulet formation
for dimensionless times in the ranges15. The transient

i ; o] =0.20 -----g=0.60 -
growth calculations are extended through a dimensionless 4l e :=o.35 .......... :=080

time t=40, so the transient dynamics leading to rivulet for- ;
mation should be adequately captured. 5

Figure 5 depicts the temporal evolution oféxp(tA)| for 3
selected dimensionless wave numbgrsThis curve is the £
envelope(maximized over all initial conditionsof the am-
plification of individual initial conditions. Each point on the .
curve represents the maximum amplification of a different 0 10 20 30 40
initial condition (the optimal for that timg There initially is (d) time
a very small spike of transient amplificatigdiess thare') for _ _ o _ o
each wave number as the contact line adjusts to the imposed FIG. 5. Maximum possible amplification of disturbances within
disturbance. Exponential growth at the rate predicted fronft time intervalt for the height profiles shown in Fig.(d). The
the modal theory is approached by tifre 5—10 for almost ~ Parameter values ai@ «=0.10,C4=0.10, (b) «=0.01,C,=0.10,
every wave number, and the rapid attainment of this “long® @=0-01,Cs=1.00, andd) «=0.001,C.=0.10.
time” limit explains the agreement between the experimen-
tally observed initial finger growth rate and the eigenvalueematically required agreement therefore serves as a check on
predicted from modal ana]ys[g_]_ the numerical schemes used.

This convergence to the modal growth rate demonstrates
complete agreement between the transient analysis at long
times and the results of eigenvalue analysis, which must oc- Plotted in Figs. 6—8 are the optimal initial staiég, and
cur since, as indicated by E0), the asymptotic stability of  the final statesc=oUqp, Corresponding to the system’s
the system as— o is governed by exfd;,t), and the eigen- response after timeto monochromatic disturbances of rep-
value Ay, is the 8 found from the modal theory. This math- resentative transverse wave numbgrfor «=0.10 andC,

2. Optimal perturbations
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FIG. 6. (a) Optimal initial disturbance/,; and(b) the evolved FIG. 7. (@ Optimal initial disturbancé/, and(b) the evolved

state omaUopt after timet for a disturbance of wave numbey state omalop after timet for a disturbance of wave number
=0.00 applied to the base state wit+0.10 andC,=0.10. Each  =0.35 applied to the base state witi+0.10 andCs=0.10. Each
initial disturbance is normalized to unit magnitude, and the magnidnitial disturbance is normalized to unit magnitude, and the magni-
tude of the corresponding evolved state is equal to the amplificatiotude of the corresponding evolved state is equal to the amplification
attained by the initial disturbance at timeThe renormalized base attained by the initial disturbance at timheThe renormalized base
state is superimposed {a) to indicate which areas of the spreading state is superimposed {g) to indicate which areas of the spreading
film are most vulnerable to perturbations. film are most vulnerable to perturbations.

=0.10. The optimal initial and final states for other values oftime t=30, the corresponding modal eigenfunction, dwgg
the slip coefficient and contact slope are very similar to thosare indistinguishablénot shown.
shown in Figs. 6-8. The initial states are normalized to have The excitations for the most asymptotically unstable wave
unit magnitude, and the magnitude of the evolved states conrumberg=0.35 are plotted in Fig. 7. The disturbance applied
responds to the amplification that an initial condition of unitatt=0 that elicits the largest responsetatl is localized at
magnitude attains at time the contact line. The initial disturbances that elicit the maxi-
The optimal initial excitations and evolved states for themal system response at later times broaden to encompass
neutrally stable wave numbeg=0 are plotted in Fig. 6. The much of the capillary ridge but retain maxima at the contact
optimal initial disturbances are similar to those for unstabldine. The system’s response to these perturbations initially is
wave numbers, as is expected since disturbances with waverrowly focused at the contact line and forward portion of
numberg=0 experience growth at short times before asymp-+thecapillary ridge but broadens at later times to encompass
totically approaching a constant magnitudetase. These more of the capillary ridge. By a dimensionless titwel5
optimal disturbances for short times are centered at the conhis response to the optimal disturbance is nearly indistin-
tact line but broaden to excite the entire spreading filmguishable from the eigenfunction determined from the stan-
nearly uniformly for longer times. The slight bump near dard modal theory.
=17 in the disturbances calculated for later times results Figure 8 contains plots of the optimal initial excitations
from the imposition of the physical boundary conditions,and evolved responses for an asymptotically stable wave
which force the excitation to zero at the end of the domaimumberq=0.60 for dimensionless times ranging framl to
(£=20), which is taken to represedt— < numerically.[The  t=40. The optimal initial excitations at early times are local-
adjoint eigenvector foig=0 is a constant, as is found by ized at the contact line, as they are for unstable wave num-
integrating Eq(12) by parts to derive the adjoint operators, bers. The excitations that induce the optimal response at later
inspection of which reveals that=const. is the null adjoint times, however, do not broaden to encompass any of the
eigenfunction[20]. This result is also confirmed numeri- capillary ridge. The system’s response to the optimal distur-
cally.] This bump moves to remain several units away frombance fort=1 displays an oscillation minimum in the region
the end of the domain when the domain is successively excorresponding to the capillary ridge, but this minimum is not
tended toé=75 but has no further effect on the results. It is nearly as pronounced as it is for unstable wave numbers and
straightforward to show analytically that the zero eigenvaluds not present in the evolved disturbances for later times.
mode forg=0 is a constant multiple of the first derivative of Comparatively more of the weight of the system’s response
the height profile for the base statg,. The evolved state at is focused near the contact line than for unstable wave num-
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(@ ' ) given eigenvectors decrease, indicating that these eigenvec-
0.201 —t=1

g060 t=5 tors are far from orthogonal, thepseudospectral contours
P T-Y [ — t=10 | near the corresponding eigenvalues extend further from the

spectrum. Eigenvalues in the regions of the plot in which the
contours with the smallegtare visible are therefore the most
susceptible to perturbations, and the corresponding eigenvec-
tors are closely aligned.

Explicit computation reveals that the angles between the
subspaces defined by the eigenvectors associated with the
complex conjugate eigenvalues are as low as about 3.5°. For
any value ofq, these eigenvectors are not nearly as closely
aligned with the leading eigenvector. The nonmodal growth

010, —t=1 ] is primarily due to the interaction of specific stable eigenvec-
0.081 _':_'__':_'::fo 1 tors with the leading eigenvector, which is evident in Fig. 9
%o.oe- e 220 ] and is quantified by the spectral projection of the optimal
>, —omemne 1230 perturbationg22]. The projection of the optimal perturba-
o 0041 I tions determined in Sec. V B 2 on the eigenvectors reveals
0.2 the extent to which each eigenvector contributes to the opti-
0.0k N mal perturbations. Computation of these spectral projections
' (which are the coefficients of the optimal perturbation in the

® 0 5 10 15 20 eigenvector basjsdemonstrates that the complex conjugate
s eigenvalues do not significantly contribute to the optimal ini-
FIG. 8. (8 Optimal initial disturbance/qy and(b) the evolved g?lecri]lsmrtbances becalllus_l?h.the prokjectl(?{n_z (t)'n the ais.socﬁ]ted
state omalJopt after timet for a disturbance of wave numbey . genvectors aré smafl. 1his weak contribution expiains the
~0.60 applied to the base state with0.10 andC,=0.10, Each INSensitivity oflexp(tA)| to the length of the computational
initial disturbance is normalized to unit magnitude, and the magnidomain even though the domain length has a strong effect on
tude of the corresponding evolved state is equal to the amplificatiof€ determination of these complex eigenvalues, as noted
attained by the initial disturbance at timeThe renormalized base below. Because of the large spectral projection of the optimal
state is superimposed {g) to indicate which areas of the spreading disturbances on the leading eigenvegtodicating that, even
film are most vulnerable to perturbations. at early times, the optimal disturbances resemble the leading
adjoint eigenvector little transient growth occurs. For each

bers. Corresponding plots for other asymptotically stableV@ve number, although the values®@fndCs change by an
wave numbers are similar to those shown @sr0.60. The order of magnitude from one set of plots to the other, the
differences between Figs. 7 and 8 indicate that while th&l®gree of non-normality increases only slightly, as evident in
initial perturbations that induce the optimal system responsH€ Similarities between the plots. This apparently small in-
at later times for unstable wave numbers encompass the cag—ease is consistent with the small increase in transient
illary ridge, the analogous excitations for stable wave num3rowth displayed in the plots of laxp(tA)[ vs t shown in

bers do not. Fig.5.
In addition, the spectruntand hence the pseudospetgtra

of the operator depends on the length of the domain used,
especially for smallg. This dependence is caused by the

Close approximations to thepseudospectrum were cal- physical decay boundary conditions &s>«—i.e., the end
culated using the pseudospectal [21] for MATLAB. Re-  of the finite numerical domain corresponding to the inner
sults for wave numberg=0.00, 0.35, and 0.60 are shown in region of the flow. Increasing the end of the domain from
Fig. 9 with the physical decay boundary conditions imposedt=25 to £=75 increases the number of pairs of complex
at the end of the numerical domain&t75. The first column  conjugate eigenvalues near (Re=-0.2 from 2 to 8 forq
contains the pseudospectra for0.10 andC;=0.10, and the  =0. Longer domains do not change the spectra significantly.
second column contains those fe=0.01 andCs=1.00.  The pseudospectra indicate that these eigenvalues are the
Contours are shown foe=10",1072,...,10". The ab- most susceptible to perturbation and therefore the most dif-
scissa is R@), and the ordinate is Ita). Near the leading ficult to determine accurately. Because the extent of non-
eigenvalue, eack-pseudospectral contour exceeds the specnormality in this region of the complexplane is high, these
trum by a distance only slightly greater thanand the ei- eigenvalues may not be physically significant, but accurate
genvalue with largest real part therefore appears physicallgomputation of these subdominant eigenvalues is not impor-
determinant. tant for stability predictions.

Each of the plots exhibits the most non-normality around  Although the structure of the pseudospectra therefore
the complex eigenvalues near (Re=-0.2 because th& changes in the region of the complex plane neafzRe
=10 contours are visible in this region on &{1) scale. If ~ -0.2, the region around the most unstable eigenvalue is es-
the operator were normal, these contours would only extendentially unaffected. These results indicate that the leading
101! units beyond the eigenvalues and would not be visibleeigenvalue remains physically determinant and that the
in the figure. As the angles between the subspaces defined bynount of transient amplification is similar for computa-

3. Investigation of thee-pseudospectrum
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Im(z)

3 2 4 9
(@) Re(z) (b)

Im(z)
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Im(z)

32 F o LR S B
(e) Re(z) U] Re(z)

FIG. 9. Plots of the pseudospectra for three wave numbers. The abscissa@)isaRd the ordinate is If@). Parameters values afa)
«=0.10,9=0.0, (b) «=0.01,9=0.0, (c) «=0.10,9=0.35,(d) «=0.01,9=0.35,(e) «=0.10,9=0.60, and(f) «=0.01,q=0.60. HereCg
=0.10 fora=0.10 andC,=1.0 fora=0.01. Contours are plotted fe= 101,102, ...,10*% The dotted vertical line separates the stable and
unstable halves of the complex plane.

tional domains of various lengths. Direct computation ofsimilar to that shown for the longer domain above and
|exp(tA)|| on the different domains confirms that the maxi- clearly indicates that the leading eigenvalue is physically de-
mum amplification of disturbances is nearly identical for terminant. In contrast to the plots computed on the domain
=<25. For later times, the amplification of disturbances with¢ e [0,75], contours fore< 1073 are not visible on the scale
small wave numbers increases as the length of the domaig¥ the plot, which demonstrates that thenphysica) longer
increasegbecause the pertinent optimal excitations encomdomains cause an increase in the non-normality of the dis-
pass the entire spreading fijmbut this amplification is turbance operator and can affect the accuracy of the com-
physically insignificant because modal growth dominates aputed eigenvalues around which contours with very smaall
these late times. Furthermore, the formulation of the problengre visible.
in the “inner region” is valid only for distances 61(I) away
from the contact _Iine, so an infinite extension of t_he flat VI. DISCUSSION
region of the film is not physical. In order to determine the
height profile of the entire spreading film, the base-state pro- In agreement with results from analysis of a model em-
file must be matched to the profile in the “outer region.” Theploying a structured precursor film induced by purely attrac-
variation of the viscosity and surface tension with temperative van der Waals forcegl] and from one employing a flat
ture over this longer distance becomes appreciable and mugtecursor film[3], there is little transient growth of perturba-
be incorporated into the theoretical model. tions, even for small values of the slip coefficient. In order
The pseudospectra were also determined for a computder transient amplification to be significafi23], an initial
tional domain ending a§=25. Those results indicate an even perturbation with magnitude on the order of the microscopic
smaller degree of non-normality, so the plots are not includedength scale must be amplified to generate a macroscopic
here. The structure of the pseudospectra nede)Red is  response on a time scale shorter thaB(fif,a0. As evident
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from Fig. 5, only a small amount of transient amplification of governed by van der Waals forc¢4] cannot be directly

any initial disturbance to the height profile occurs before thecompared to the other two models because the inclusion of
modal growth dominates. This limited transient amplificationvan der Waals forces is an additional stabilizing influence
is therefore insufficient to introduce nonlinear effects thatthat slightly diminishes the growth rate of disturbances, but
would invalidate the asymptotic results of the modal theorythe qualitative results agree well. Finally, all three models
The small transient spike at early times increases in magnpyredict an identical wavelength for the most unstable distur-

tude asa decreases, but larger values@j§, which resultin pance, and this value agrees quite well with published ex-
larger modal growth rates, have almost no effect on theperimental result§l,17,24.

amount of initial transient amplification, although the maxi-
mum amount of nonmodal amplification, attainedtasce,
does increase.

Since the spectra for applied disturbances with wave num- The transient behavior of disturbances to and linear sta-
bers q=0.0 andq=0.60, for instance, are confined to the pility of thin, thermally driven films with slip at the liquid-
stable half-plane, the pseudospectra can be used to placesgiig interface have been investigated. The optimal distur-
lower bound on the amount of growth that such a disturbancgances for both asymptotically stable and unstable wave
would experience. Applying Eq24) to the case witha  ympers initially have a peak of maximum amplitude at the
=0.01 andC¢=1.0 gives a lower bound of about 1.1 fQr  contact line. Optimal disturbances that induce instability also
=0.60 and about 11 fay=0.0, while the actual values shown proaden to encompass the entire capillary ridget Ase the
in Fig. 5 are 1.3 and 13, respectively. Note that since aryolved disturbances asymptote to the eigenfunction found
applied disturbance with wave numbg+0.0 does not vary  from modal analysis, while the optimal initial disturbances
in the_trarjsvers_e_ direction, such a disturbance is incapable %fsymptote to the corresponding eigenfunction of the adjoint
inducing instability. _ _ of the linearized disturbance operator. Based on Figs. 5-8,

The results of the transient analysis demonstrate that thgig asymptotic limit is attained by a dimensionless titme
ordering of the modes of different wave numbers according< 10—20, which corresponds to the timescale reported in the
to amplification corresponds to the_ asymptotic results fromiterature for the onset of rivulet formatiofl7—19. Al-
the modal theory because the duration of nonmodal g_rowth ithough the slip model strongly influences the shapes of the
short. These results also demonstrate a smooth, rapid trangptimal disturbances to the film, convergence of the distur-
tion to the asymptotic behavior predicted from the m.Oda|bance growth rate to the asymptotic value found from the
theory and therefore that the effects of the non-normality ofyggal theory occurs rapidly for all disturbances. The limited
the disturbance operators are slight. transient amplification is insufficient to induce significant

_The results of this investigation of a slip model agree wellngn|inear effects, and this conclusion is reinforced by exami-
with results for models employing structured and unstrucyation of plots of the pseudospectra of the linearized distur-
tured precursor films to alleviate the contact line singularitypsnce operator. For an appropriate choice of slip coefficient
[1,3,4. Significant transient amplification is not found in any anq contact slope, the base-state profiles and modal predic-
of the models for thermally driven films. The slip model hastjons of the flat precursor film model can be reproduced. The
the smallest amount of transient amplification because allagits from this study, along with those from two other in-
applied disturbances are truncated at the physical end of thgsstigationg3,4], indicate that the transient amplification of
domain at the contact line. More amplification occurs in thegisturbances is relatively unimportant for thermally driven
precursor film models because the applied disturbances cafins and that, regardless of the contact line model, the non-
extend far into the precursor film and thus, as they are comormality of the linearized disturbance operator is insuffi-
vected toward the apparent contact line, can repeatedly €Xjent to invalidate the modal results.
cite the most vulnerable area of the spreading film near the Note added in proofAfter this work was completed, the
forward portion of the capillary ridge. This larger amount of 5,;thors became aware of an independent study of thermally
transient amplification is still insufficient to invalidate the yrven films subject to boundary slif25]. The different
results of the modal theory, and plots of the pseudospectigoyndary conditions applied to the disturbance fields in Ref.

for these models are similar to those for the slip model ino5) result in adjoint eigenfunctions rather different from
that they do not exhibit a large degree of non-normality.inose presented here.

Most significantly, the modal predictions of the slip model
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