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Thin liquid films driven to spread on homogeneous surfaces by thermocapillarity can undergo frontal
breakup and parallel rivulet formation with well-defined wavelength. Previous modal analyses have relieved
the well-known divergence in stress that occurs at a moving contact line by matching the front region to a
precursor film. Because the linearized disturbance operator is non-normal, a generalized, nonmodal analysis is
required to probe film stability at all times. The effect of the contact line model on nonmodal stability has not
been previously investigated. This work examines the influence of boundary slip on thermocapillary driven
spreading using a transient stability analysis, which recovers the conventional modal results in the long-time
limit. In combination with earlier work on thermocapillary driven spreading, this study verifies that the dy-
namics and stability of this system are rather insensitive to the choice of contact line model and that the leading
eigenvalue is physically determinant, thereby assuring results that agree with the eigenspectrum. Modal results
for the flat precursor film model are reproduced with appropriate choice of slip coefficient and contact line
slope.
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I. INTRODUCTION

Thin liquid films driven to spread over a smooth and
chemically homogeneous surface provide an interesting sys-
tem in which to study the evolution of instabilities at a mov-
ing front. Experiments have shown that both body forces,
like centrifugation and gravity, and surface stresses, due to
thermocapillary forces or a stream of gas directed along the
film interface, can cause a flow transition from a uniform
front to an array of parallel rivulets. A simple example of this
instability can be seen in a paint film streaming down a ver-
tical wall. During the past several years, there has been sig-
nificant work in examining disturbance amplification in those
systems using a generalized linear stability analysis suitable
for non-normal systems. Some systems appear to undergo
significant transient growth while others essentially repro-
duce the predictions of normal mode analysis. Because the
instabilities occur in the vicinity of the moving contact line,
more attention is being focused on the choice of boundary
conditions used to relieve the usual stress singularity caused
by the incompatibility of the no-slip condition with motion
of the contact line. It would therefore be useful to understand
precisely how the choice of contact line model affects the
spatial and temporal evolution of the film profile and how
this profile in turn influences the transient and asymptotic
stability of driven films.

Previous studies of thermocapillary driven flow[1–4] uti-
lized a precursor film to relieve the stress singularity at the

moving contact line, which arises from the conventional no-
slip boundary condition at the solid surface. Although both
slip and precursor film models for coating flows driven by a
body force have been examined via a modal stability analysis
[5], the literature does not contain stability analyses of slip
models for thermocapillary driven films. Expanding the work
in the first part of this study[4], the present work incorpo-
rates a slip boundary condition at the solid surface and ex-
amines the effects of this model on the transient dynamics
and amplification of optimal disturbances to the spreading
film. The non-normality of the linearized disturbance opera-
tor is investigated through examination of the temporal evo-
lution of the maximum disturbance amplification and plots of
the pseudospectra. The results indicate that the transient am-
plification of disturbances is relatively unimportant for ther-
mally driven films and that the stability predictions of differ-
ent contact line models agree quantitatively.

II. GOVERNING EQUATIONS

A general equation governing the evolution of a thermally
driven film within the lubrication approximation(including
slip at the solid surface) has been derived previously[6], but
the slip model was different, and no detailed examination of
the velocity field was made. The derivation of the governing
partial differential equation(PDE) is therefore given in some
detail below. Consider the thermocapillary driven flow of a
Newtonian liquid film of densityr and viscositym. The liq-
uid is supplied from a source at constant flux, and a constant
thermal gradient is applied along the substrate such that the
temperature decreases in the direction of spreading.

Assuming that the film is sufficiently thin that hydrostatic
pressure and drainage are negligible, the lubrication equa-
tions that govern the motion of the liquid are

m
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where su,v ,wd are the components of the velocity in the
streamwise, transverse, and normal directions relative to the
substrate,sx,y,zd are the components of a Cartesian coordi-

nate system in the respective directions, andh̃ is the film
thickness. The boundary conditions are slip at the solid sur-
face, based on the model proposed by Greenspan for spread-
ing drops[7],
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and prescribed(constant) shear stress at the vapor-liquid in-
terface,
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The slip coefficient is represented byã. Greenspan suggested
that ãø10−14 m2 but gave no rigorous justification for this
choice. The resulting expressions for the streamwise and
transverse components of the velocity are
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Although a singularity exists in the streamwise velocity at

the contact line, the shear stress and fluxse0
h̃udzd are well

behaved. Furthermore, for sufficiently small values of the
slip coefficient, the continuum model loses validity as

h̃→0 well before the singularity becomes important. This
singularity is not present in flow driven exclusively by a
body force. An applied surface shear stress acts on an areal
element of fluid and is incorporated into the velocity profile
through a boundary condition. A body force acts on a volume

element of the fluid, and the resulting additional power ofh̃

in the shear stress at the solid surface negates theh̃−1 in the
slip model.

The kinematic condition at the material, vapor-liquid in-
terface is expressed as

Dh̃

Dt̃
= uwuz=h̃, s5d

whereD /Dt̃ denotes the material derivative. Integrating the
incompressible form of the continuity equation with respect
to z and substitutinguwuz=h̃ from Eq. (5) yields the interface
equation
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Substituting Eq.(4) into Eq.(6) yields a single partial differ-
ential equation that governs the evolution of the film thick-
ness profile in the inner region near the contact line where
effects of surface curvature are important:
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s7d

Equation(7) is converted to dimensionless form by intro-
ducing the transformations

x = −
x

l
, z =

y

l
,

h =
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hc
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l/uc
. s8d

The dynamic capillary lengthl =hc/ s3Cad1/3=s2g0hc
2/3td1/3,

with Ca=muc/g the capillary number, is obtained by balanc-
ing the thermocapillary force against viscous and capillary
forces. The characteristic Marangoni velocity of the ther-
mally driven flow is given byuc;hct /2m, wherehc is the
characteristic film thickness far from the leading edge where
capillary effects are unimportant. The valueg0 is evaluated
at the same location ashc

Assuming that the variation of surface tension with tem-
perature makes a negligible contribution to the pressure gra-
dient in the inner region of the flow, the dimensionless form
of Eq. (7) is

ht − sh2dx + = · fsh3 + ahd = ¹2hg = 0, s9d

where=; x̂]x+ ẑ]z and subscripts denote partial differentia-
tion with respect tox, z, or t. The physical boundary condi-
tions are vanishing film thickness at the contact linesx
=xCLd, hsxCLd=0, prescribed contact slopehxsxCLd=Cs, and
a flat film far from the contact line,h→1 andhxxx→0 as
x→`.

III. BASE FLOW

A traveling-wave solution for the base flow that is con-
stant in the moving framej=x+ct can be found by substi-
tuting hsx ,z ,td=h0sjd+«h1sj ,z ,td in Eq. (9), wherec=1 is
the wave speed and«!1. The position of the(unperturbed)
contact line is given byj=0. Integrating the resulting ordi-
nary differential equation(ODE) once and applying the
boundary conditions yields
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h0jjj =
h0 − 1

h0
2 + a

, s10d

subject to the conditionsh0s0d=0, h0js0d=Cs, andh0→1 as
j→`. Equation(10) is solved numerically using a standard
Runge-Kutta shooting method.

A. Steady-state solutions to base flow

Typical solutions for the height profile of the spreading
film near the advancing front are shown in Fig. 1. Represen-
tative values of the slip coefficient are chosen to correspond
to characteristic film thicknesses of a few microns, which are
typical of many experimental investigations of thermally
driven films. The contact slope is also varied from 0.10 to
1.00. Smaller values ofCs have only a small influence on the
height profile and are not shown. The maximum amplitude of
the capillary ridge increases with decreasing slip and increas-
ing values of the slope at the contact line. For an appropriate
choice ofa andCs that produces the same maximum ampli-
tude of the capillary ridge as a precursor film of dimension-
less thicknessb, the base-state height profiles for the slip
model and flat precursor film model are essentially indistin-
guishable. The base-state profile from the slip model with
a=0.01 andCs=1.2035 is compared to the profile from the

precursor film model withb=0.01 in Fig. 2. The parameters
were chosen so that the maximum amplitude of the capillary
ridge is the same in either model and so that the contact line
regions are similar, and the profiles cannot be distinguished
on the scale of the plot. Such agreement is expected because
the third order ODE’s governing the base flows for the slip
model and flat precursor film model[1] become identical as
a→0 and b→0. As shown in Fig. 2, strong agreement is
attained even at finite values ofa andb.

B. Stability analysis of steady-state solutions

In order to determine the stability of the spreading front to
sinusoidal disturbances in the transverse direction,ẑ, Eq. (9)
is perturbed about the traveling-wave solution by the impo-
sition of two-dimensional disturbances of the form

h1sj,z,td = Gsj,tdexpsiqzd, s11d

where the dimensionless wave number is defined asq=kwl,
with kw the corresponding dimensional wave number andl
the scaling appropriate for the inner region as defined in Eq.
(8). The resulting(linearized) equation governing the evolu-
tion of the disturbance in the streamwise direction is

]G

]t
= F2h0j −
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2ds2h0 + a − h0

2dh0j

sh0
2 + ad2 − aq4h0 − q4h0

3 −
6h0h0jsh0 − 1d

h0
2 + a

GG + F− 1 + 2h0 + 3q2h0
2h0j + aq2h0j

−
sa + 3h0

2dsh0 − 1d
h0

2 + a
GGj + s2aq2h0 + 2q2h0

3dGjj + s− ah0j − 3h0
2h0jdGjjj + s− ah0 − h0

3dGjjjj. s12d

This equation is subject to the decay conditionsG, Gj→0 as
j→` since the perturbation should not affect the outer re-
gion of the flow. Atj=0, the boundary conditions are

h0jjG − CsGj = 0, s13d

which is derived from a Taylor series expansion ofh andhj

aboutj=jCL [5], and

Gt − sCs + aq2h0jjdG + aCsGjjj = 0, s14d

which ensures that continuity is satisfied at the contact line.
This last boundary condition can be derived by linearizing a
kinematic condition describing the motion of the contact line
or by evaluating Eq.(12) at j=0 and using Eq.(13). Dis-
cretizing Eq.(12) in space using a central difference scheme

FIG. 1. Numerical solution of the dimensionless, steady-state
profile h0sjd.

FIG. 2. Comparison of the base-state profiles from the slip
model with a=0.01 andCs=1.2035 and the precursor film model
with b=0.01. The parameters were chosen such that the maximum
amplitude of the capillary ridge is 2.051 89, and the two curves
cannot be distinguished on the scale of the plot. The inset shows an
enlarged view of the region near the contact line.
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yields a system of equations that can be expressed in opera-
tor form as

]G

]t
= AG. s15d

The linear autonomous matrixAsjd that acts on the state of
the systemGstd contains the elements obtained from the dis-
cretization and is real, nondefective, and non-normal.

IV. INVESTIGATION OF NON-NORMALITY

A. Linear stability theory

The traditional approach to hydrodynamic stability pro-
ceeds through modal analysis, which assumes exponential
time dependence and reduces the analysis of Eq.(15) to solv-
ing the eigenvalue problemDiiG=AG for the eigenvaluesDii
of A. Although accurate for flows governed bynormal op-
erators[8], this traditional analysis can break down ifA is
non-normal, in thatA does not commute with its adjoint or,
equivalently, does not have an orthogonal set of eigenvec-
tors. The adjointA† of A is defined bysu ,Avd=sA†u ,vd for
all u, v in the domain ofA, wheres· , ·d denotes the inner
product.

The results of modal analysis are always valid ifA is a
compact normal operator[9]. For a non-normal operator,
however, traditional modal theory only predicts the
asymptotic behavior of solutions to the linearized equation as
t→` and may prove inaccurate on the time scales of physi-
cal relevance. Investigations of the linear stability of distur-
bances governed by non-normal operators must therefore
proceed beyond simple modal analysis to ensure the physical
relevance of the results[10–13].

B. Optimal perturbation growth

The solution to Eq.(15) is the operator exponential acting
on the initial conditionG0:

Gstd = expstAdG0. s16d

The maximum amplificationsmax of any initial perturbation
over timet is [13]

smaxstd ; sup
G0Þ0

iGi
iG0i

= iexpstAdi, s17d

where the Euclidean norm is used. A nondefective matrixA
has the similarity transform

A = SDS−1, s18d

where S is the matrix whose columns are the normalized
eigenvectors ofA in order of growth rate andD is the diag-
onal matrix of the associated eigenvalues[14]. It follows that

expsD11td ø iexpstAdi = iSexpstDdS−1i ø iSiiS−1iexpsD11td,

s19d

where D11 is the leading entry ofD. If A is normal,S is
unitary, and iexpstAdi=expsD11td∀ t. If A is non-normal,
however, the eigenvectors are not orthogonal, and the norm

of S and its inverse can be much greater than unity. Several
orders of magnitude of transient amplification could occur
and induce nonlinear effects, thereby invalidating the results
of modal analysis[13].

Since expsAtd=SexpstDdS−1, in the limit t→` the first
column ofS and the first row ofS−1 exponentially dominate
with amplification factor expfResD11tdg. Applying
Schwartz’s inequality reveals that the normalized initial con-
dition that produces the maximum growth over timet is the
leading eigenvector ofA†, which is the leading adjoint ei-
genvector ofA. Formally, the spectral abscissa ofA, asAd, is
equal to the growth abscissagsAd [15]:

asAd ; sup
zPLsAd

Reszd ; ReflmaxsAdg = gsAd ; lim
t→`

t−1lnietAi,

s20d

which demonstrates that the results from modal analysis are
recovered ast→`.

C. Optimal perturbations

To determine the evolution of an optimal initial state into
its final state at timet, the singular value decomposition of
expstAd is calculated according to[13]

expstAd = USV†, s21d

where the columns of the unitary matrixV represent the
complete set of initial states and the columns of the unitary
matrix U are orthonormal basis vectors that span the range
space of final states. The diagonal matrixS contains ele-
mentssi that describe the growth of each corresponding ini-
tial state during the specified time interval. Note that the
singular value decomposition must be calculated for each
time at whichU, S, andV are sought. For an initial pertur-
bation G0=oaiVi with ouaiu2=1, applied at timet=0, the
corresponding evolved state at timet is G=oaisiUi
=expstAdG0. The vectorsVi, which form the columns ofV,
are ordered by growth; the optimal perturbation at a specified
time, Vopt;V1, is defined as the initial condition that gener-
ates the maximum growth over the time intervalt. This
maximum growth is defined by the leading singular value
smax;iexpstAdi. Since all experimental studies of ther-
mocapillary fingering phenomena have demonstrated the
predominance of a single unstable wavelength, the initial
states examined in this study are characterized by monochro-
matic disturbancesVsj ,qd.

The maximum possible amplification at any time is at-
tained by the optimal initial disturbance calculated for that
time. As t→`, the evolved statesmaxUopt, corresponding to
the optimal initial condition with a wave number that induces
the largest growth over all time, evolves into the eigenfunc-
tion that describes fingered growth in the spanwise direction,
Hsjd. The optimal initial disturbanceVoptst→`d in this long-
time limit (at which the most unstable mode dominates) as-
ymptotes toH†sjd, the eigenvector of the adjoint linearized
operator, which is the initial condition that optimally excites
the most unstable mode.(Slight differences may occur at the
ends of the domain due to the imposition of the physical
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boundary conditions on the adjoint eigenvector.) For normal
A, the optimal initial condition for any time is simply the
normalized leading eigenvector.

D. e-pseudospectrum

Determining the magnitude of the resolvent,szI −Ad−1,
whereI is the identity matrix, for a range ofzPC provides
useful information regarding the behavior of the matrixA
(and the operator of which it is the discrete representation)
that cannot be determined by merely computing the eigen-
values. For eacheù0, thee-pseudospectrum ofA is defined
as [15]

LesAd = hzP C:iszI − Ad−1i ù e−1j. s22d

If A is normal, thenLesAd (in the two-norm) is the union of
discs formed by the set of points inC within a distancee of
the spectrum ofA, LsAd. The e-pseudospectrum may be
much larger if A is non-normal. Examination of plots of
LesAd gives an indication of the extent of non-normality in a
matrix and thus of the physical relevance of its eigenvalues.
In any norm, difficulty arises if the basis of eigenvectors is ill
conditioned. If an arbitrary vector is expressed terms of the
eigenvector basis, the expansion coefficients may be ex-
tremely large relative to the magnitude of the vector itself.
The relevant physics of the system may then be dominated
by the evolving pattern of cancellation of these coefficients
rather than by the behavior of individual eigenvalues. Stabil-
ity predictions based on the eigenvalues could therefore be
unreliable. An equivalent definition of the pseudospectra is
[15]

LesAd = hzP C:zP LsA + Ed

for someE withiEi ø ej. s23d

This definition of thee-pseudospectrum in terms of eigenval-
ues of perturbed matrices reveals that the pseudospectra can
be used to assess the susceptibility of eigenvalues to pertur-
bations(and thus give an indication of the accuracy of the
eigenvalues).

If contours fore!1 are visible on anOs1d scale, thenA
is highly non-normal. The eigenvalues in that region of the
complexz plane are nearly linearly dependent and can inter-
act. These eigenvalues are also highly susceptible to pertur-
bations, as indicated by Eq.(23). They may also be difficult
to compute accurately and are of dubious physical relevance.
If such contours fore!1 are visible around the leading
(least stable) eigenvalue, then stability predictions based on
the eigenvalues may be inaccurate. Further analysis and
computation ofiexpstAdi is warranted. If contours for small
e are not visible andA appears close to normal, then the
eigenvalues should be accurate and sufficient to assess the
stability of the physical system.

The pseudospectra of an operator or matrix also can be
used to calculate bounds oniexpstAdi. A lower bound on the
norm of the matrix exponential, derived from the Laplace
transform and stated as part of the Kreiss matrix theorem, is
given for anye.0 by [15]

sup
tù0

iexpstAdi ù e−1 sup
zPLesAd

Reszd. s24d

This bound is relevant if the spectrum is confined to the left
half-plane since a lower bound on the transient growth can
quickly be found by determining how far the pseudospectra
extend into the right half-plane. If the spectrum extends into
the right half-plane, then this bound is not useful since the
growth becomes infinite ast→`. Other bounds can also be
constructed[15,16].

V. LINEAR STABILITY RESULTS

A. Eigenvalue analysis

The behavior of solutions of Eq.(12) at long times is
determined by seeking an exponential solution of the form

Gsj,td = Hsjdexpsbtd, s25d

whereb denotes the disturbance growth rate. The value ofb
with largest real part is the leading eigenvalue ofA, D11.
Equation(15) becomesbH =AH, and the eigenvalues and
eigenfunctions ofAsjd are calculated using theeig function
in MATLAB 5.3. The dispersion curvesbsqd, corresponding to
the four base state height profiles shown in Fig. 1, are plotted
in Fig. 3. There is a band of unstable wave numbers 0,q
&0.55 with the maximum growth rate occurring atqmax
<0.35. The growth rate of the most unstable wave number
increases as the slip coefficienta decreases or the contact
slopeCs increases, both of which correspond to an increase
in the amplitude of the capillary ridge. The largest eigen-
value for the base flow witha=0.01 andCs=1.00 is nearly
as large as for the base flow witha=0.001 andCs=0.10.

The dispersion curves for the slip model witha=0.10,
Cs=0.10; a=0.01, Cs=1.00; anda=0.01, Cs=1.2035 are
plotted with the dispersion curves for the flat precursor film
model withb=0.10 andb=0.01 in Fig. 4. For an appropriate
choice of parameters, the unstable portions of the dispersion
curves overlap almost completely. Although the base state
profiles for a=0.01, Cs=1.2035, andb=0.01 are nearly
identical, as shown in Fig. 2, the slip model yields slightly
larger eigenvalues for the unstable wave numbers 0,q
&0.55, so the dispersion curves do not overlap. While the
base state fora=0.01,Cs=1.00 has a slightly lower capillary
ridge, the dispersion curves for these parameter values al-
most entirely overlap those forb=0.01 for the range ofq
shown in Fig. 4.

FIG. 3. Dispersion curvesbsqd from eigenvalue analysis corre-
sponding to the base-state profiles shown in Fig. 1.
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B. Nonmodal analysis

The behavior of solutions to Eq.(12) at any time is deter-
mined by examining the time dependence ofiexpstAdi in the
Euclidean norm. The evolution of an initial disturbance to its
state after an arbitrary timet is also investigated. An empha-
sis of this investigation is the reason for which the traditional
modal description of linear stability yields such accurate pre-
dictions for the non-normal disturbance operator that governs
thermally driven, thin-film flows.

1. Amplification ratio

MATLAB 5.3 was used to calculate matrix norms and sin-
gular value decompositions. The number of grid points used
to determine the discretized elements comprising matrixA
ranges from 1000 to 4500 points. Experimental results pub-
lished in the literature[17–19] demonstrate rivulet formation
for dimensionless times in the ranget&15. The transient
growth calculations are extended through a dimensionless
time t=40, so the transient dynamics leading to rivulet for-
mation should be adequately captured.

Figure 5 depicts the temporal evolution of lniexpstAdi for
selected dimensionless wave numbersq. This curve is the
envelope(maximized over all initial conditions) of the am-
plification of individual initial conditions. Each point on the
curve represents the maximum amplification of a different
initial condition (the optimal for that time). There initially is
a very small spike of transient amplification(less thane1) for
each wave number as the contact line adjusts to the imposed
disturbance. Exponential growth at the rate predicted from
the modal theory is approached by timet<5–10 for almost
every wave number, and the rapid attainment of this “long-
time” limit explains the agreement between the experimen-
tally observed initial finger growth rate and the eigenvalue
predicted from modal analysis[1].

This convergence to the modal growth rate demonstrates
complete agreement between the transient analysis at long
times and the results of eigenvalue analysis, which must oc-
cur since, as indicated by Eq.(20), the asymptotic stability of
the system ast→` is governed by expsD11td, and the eigen-
valueD11 is theb found from the modal theory. This math-

ematically required agreement therefore serves as a check on
the numerical schemes used.

2. Optimal perturbations

Plotted in Figs. 6–8 are the optimal initial statesVopt and
the final statesG=smaxUopt, corresponding to the system’s
response after timet to monochromatic disturbances of rep-
resentative transverse wave numbersq for a=0.10 andCs

FIG. 4. Comparison of dispersion curves from the flat precursor
film model with those from the slip model. The portions of the
curves corresponding to unstable wave numbers overlap almost
completely for an appropriate choice of parameters, although there
is some deviation for largeq.

FIG. 5. Maximum possible amplification of disturbances within
a time intervalt for the height profiles shown in Fig. 1(a). The
parameter values are(a) a=0.10,Cs=0.10, (b) a=0.01,Cs=0.10,
(c) a=0.01,Cs=1.00, and(d) a=0.001,Cs=0.10.
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=0.10. The optimal initial and final states for other values of
the slip coefficient and contact slope are very similar to those
shown in Figs. 6–8. The initial states are normalized to have
unit magnitude, and the magnitude of the evolved states cor-
responds to the amplification that an initial condition of unit
magnitude attains at timet.

The optimal initial excitations and evolved states for the
neutrally stable wave numberq=0 are plotted in Fig. 6. The
optimal initial disturbances are similar to those for unstable
wave numbers, as is expected since disturbances with wave
numberq=0 experience growth at short times before asymp-
totically approaching a constant magnitude ast→`. These
optimal disturbances for short times are centered at the con-
tact line but broaden to excite the entire spreading film
nearly uniformly for longer times. The slight bump nearj
=17 in the disturbances calculated for later times results
from the imposition of the physical boundary conditions,
which force the excitation to zero at the end of the domain
sj=20d, which is taken to representj→` numerically.[The
adjoint eigenvector forq=0 is a constant, as is found by
integrating Eq.(12) by parts to derive the adjoint operators,
inspection of which reveals thatH†=const. is the null adjoint
eigenfunction[20]. This result is also confirmed numeri-
cally.] This bump moves to remain several units away from
the end of the domain when the domain is successively ex-
tended toj=75 but has no further effect on the results. It is
straightforward to show analytically that the zero eigenvalue
mode forq=0 is a constant multiple of the first derivative of
the height profile for the base state,h0j. The evolved state at

time t=30, the corresponding modal eigenfunction, andh0j

are indistinguishable(not shown).
The excitations for the most asymptotically unstable wave

numberq=0.35 are plotted in Fig. 7. The disturbance applied
at t=0 that elicits the largest response att=1 is localized at
the contact line. The initial disturbances that elicit the maxi-
mal system response at later times broaden to encompass
much of the capillary ridge but retain maxima at the contact
line. The system’s response to these perturbations initially is
narrowly focused at the contact line and forward portion of
thecapillary ridge but broadens at later times to encompass
more of the capillary ridge. By a dimensionless timet=15
this response to the optimal disturbance is nearly indistin-
guishable from the eigenfunction determined from the stan-
dard modal theory.

Figure 8 contains plots of the optimal initial excitations
and evolved responses for an asymptotically stable wave
numberq=0.60 for dimensionless times ranging fromt=1 to
t=40. The optimal initial excitations at early times are local-
ized at the contact line, as they are for unstable wave num-
bers. The excitations that induce the optimal response at later
times, however, do not broaden to encompass any of the
capillary ridge. The system’s response to the optimal distur-
bance fort=1 displays an oscillation minimum in the region
corresponding to the capillary ridge, but this minimum is not
nearly as pronounced as it is for unstable wave numbers and
is not present in the evolved disturbances for later times.
Comparatively more of the weight of the system’s response
is focused near the contact line than for unstable wave num-

FIG. 6. (a) Optimal initial disturbanceVopt and (b) the evolved
state smaxUopt after time t for a disturbance of wave numberq
=0.00 applied to the base state witha=0.10 andCs=0.10. Each
initial disturbance is normalized to unit magnitude, and the magni-
tude of the corresponding evolved state is equal to the amplification
attained by the initial disturbance at timet. The renormalized base
state is superimposed in(a) to indicate which areas of the spreading
film are most vulnerable to perturbations.

FIG. 7. (a) Optimal initial disturbanceVopt and (b) the evolved
state smaxUopt after time t for a disturbance of wave numberq
=0.35 applied to the base state witha=0.10 andCs=0.10. Each
initial disturbance is normalized to unit magnitude, and the magni-
tude of the corresponding evolved state is equal to the amplification
attained by the initial disturbance at timet. The renormalized base
state is superimposed in(a) to indicate which areas of the spreading
film are most vulnerable to perturbations.
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bers. Corresponding plots for other asymptotically stable
wave numbers are similar to those shown forq=0.60. The
differences between Figs. 7 and 8 indicate that while the
initial perturbations that induce the optimal system response
at later times for unstable wave numbers encompass the cap-
illary ridge, the analogous excitations for stable wave num-
bers do not.

3. Investigation of thee-pseudospectrum

Close approximations to thee-pseudospectrum were cal-
culated using the pseudospectraGUI [21] for MATLAB . Re-
sults for wave numbersq=0.00, 0.35, and 0.60 are shown in
Fig. 9 with the physical decay boundary conditions imposed
at the end of the numerical domain atj=75. The first column
contains the pseudospectra fora=0.10 andCs=0.10, and the
second column contains those fora=0.01 andCs=1.00.
Contours are shown fore=10−1,10−2, . . . ,10−11. The ab-
scissa is Reszd, and the ordinate is Imszd. Near the leading
eigenvalue, eache-pseudospectral contour exceeds the spec-
trum by a distance only slightly greater thane, and the ei-
genvalue with largest real part therefore appears physically
determinant.

Each of the plots exhibits the most non-normality around
the complex eigenvalues near Reszd<−0.2 because thee
=10−11 contours are visible in this region on anOs1d scale. If
the operator were normal, these contours would only extend
10−11 units beyond the eigenvalues and would not be visible
in the figure. As the angles between the subspaces defined by

given eigenvectors decrease, indicating that these eigenvec-
tors are far from orthogonal, thee-pseudospectral contours
near the corresponding eigenvalues extend further from the
spectrum. Eigenvalues in the regions of the plot in which the
contours with the smalleste are visible are therefore the most
susceptible to perturbations, and the corresponding eigenvec-
tors are closely aligned.

Explicit computation reveals that the angles between the
subspaces defined by the eigenvectors associated with the
complex conjugate eigenvalues are as low as about 3.5°. For
any value ofq, these eigenvectors are not nearly as closely
aligned with the leading eigenvector. The nonmodal growth
is primarily due to the interaction of specific stable eigenvec-
tors with the leading eigenvector, which is evident in Fig. 9
and is quantified by the spectral projection of the optimal
perturbations[22]. The projection of the optimal perturba-
tions determined in Sec. V B 2 on the eigenvectors reveals
the extent to which each eigenvector contributes to the opti-
mal perturbations. Computation of these spectral projections
(which are the coefficients of the optimal perturbation in the
eigenvector basis) demonstrates that the complex conjugate
eigenvalues do not significantly contribute to the optimal ini-
tial disturbances because the projections on the associated
eigenvectors are small. This weak contribution explains the
insensitivity of iexpstAdi to the length of the computational
domain even though the domain length has a strong effect on
the determination of these complex eigenvalues, as noted
below. Because of the large spectral projection of the optimal
disturbances on the leading eigenvector(indicating that, even
at early times, the optimal disturbances resemble the leading
adjoint eigenvector), little transient growth occurs. For each
wave number, although the values ofa andCs change by an
order of magnitude from one set of plots to the other, the
degree of non-normality increases only slightly, as evident in
the similarities between the plots. This apparently small in-
crease is consistent with the small increase in transient
growth displayed in the plots of lniexpstAdi vs t shown in
Fig. 5.

In addition, the spectrum(and hence the pseudospectra)
of the operator depends on the length of the domain used,
especially for smallq. This dependence is caused by the
physical decay boundary conditions asj→`—i.e., the end
of the finite numerical domain corresponding to the inner
region of the flow. Increasing the end of the domain from
j=25 to j=75 increases the number of pairs of complex
conjugate eigenvalues near Reszd<−0.2 from 2 to 8 forq
=0. Longer domains do not change the spectra significantly.
The pseudospectra indicate that these eigenvalues are the
most susceptible to perturbation and therefore the most dif-
ficult to determine accurately. Because the extent of non-
normality in this region of the complexz plane is high, these
eigenvalues may not be physically significant, but accurate
computation of these subdominant eigenvalues is not impor-
tant for stability predictions.

Although the structure of the pseudospectra therefore
changes in the region of the complex plane near Reszd<
−0.2, the region around the most unstable eigenvalue is es-
sentially unaffected. These results indicate that the leading
eigenvalue remains physically determinant and that the
amount of transient amplification is similar for computa-

FIG. 8. (a) Optimal initial disturbanceVopt and (b) the evolved
state smaxUopt after time t for a disturbance of wave numberq
=0.60 applied to the base state witha=0.10 andCs=0.10. Each
initial disturbance is normalized to unit magnitude, and the magni-
tude of the corresponding evolved state is equal to the amplification
attained by the initial disturbance at timet. The renormalized base
state is superimposed in(a) to indicate which areas of the spreading
film are most vulnerable to perturbations.
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tional domains of various lengths. Direct computation of
iexpstAdi on the different domains confirms that the maxi-
mum amplification of disturbances is nearly identical fort
ø25. For later times, the amplification of disturbances with
small wave numbers increases as the length of the domain
increases(because the pertinent optimal excitations encom-
pass the entire spreading film), but this amplification is
physically insignificant because modal growth dominates at
these late times. Furthermore, the formulation of the problem
in the “inner region” is valid only for distances ofOsld away
from the contact line, so an infinite extension of the flat
region of the film is not physical. In order to determine the
height profile of the entire spreading film, the base-state pro-
file must be matched to the profile in the “outer region.” The
variation of the viscosity and surface tension with tempera-
ture over this longer distance becomes appreciable and must
be incorporated into the theoretical model.

The pseudospectra were also determined for a computa-
tional domain ending atj=25. Those results indicate an even
smaller degree of non-normality, so the plots are not included
here. The structure of the pseudospectra near Reszd<0 is

similar to that shown for the longer domain above and
clearly indicates that the leading eigenvalue is physically de-
terminant. In contrast to the plots computed on the domain
jP f0,75g, contours fore,10−3.5 are not visible on the scale
of the plot, which demonstrates that the(unphysical) longer
domains cause an increase in the non-normality of the dis-
turbance operator and can affect the accuracy of the com-
puted eigenvalues around which contours with very smalle
are visible.

VI. DISCUSSION

In agreement with results from analysis of a model em-
ploying a structured precursor film induced by purely attrac-
tive van der Waals forces[4] and from one employing a flat
precursor film[3], there is little transient growth of perturba-
tions, even for small values of the slip coefficient. In order
for transient amplification to be significant[23], an initial
perturbation with magnitude on the order of the microscopic
length scale must be amplified to generate a macroscopic
response on a time scale shorter than 1/bsqmaxd. As evident

FIG. 9. Plots of the pseudospectra for three wave numbers. The abscissa is Reszd, and the ordinate is Imszd. Parameters values are(a)
a=0.10, q=0.0, (b) a=0.01, q=0.0, (c) a=0.10, q=0.35, (d) a=0.01, q=0.35, (e) a=0.10, q=0.60, and(f) a=0.01, q=0.60. HereCs

=0.10 fora=0.10 andCs=1.0 fora=0.01. Contours are plotted fore=10−1,10−2, . . . ,10−11. The dotted vertical line separates the stable and
unstable halves of the complex plane.
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from Fig. 5, only a small amount of transient amplification of
any initial disturbance to the height profile occurs before the
modal growth dominates. This limited transient amplification
is therefore insufficient to introduce nonlinear effects that
would invalidate the asymptotic results of the modal theory.
The small transient spike at early times increases in magni-
tude asa decreases, but larger values ofCs, which result in
larger modal growth rates, have almost no effect on the
amount of initial transient amplification, although the maxi-
mum amount of nonmodal amplification, attained ast→`,
does increase.

Since the spectra for applied disturbances with wave num-
bers q=0.0 andq=0.60, for instance, are confined to the
stable half-plane, the pseudospectra can be used to place a
lower bound on the amount of growth that such a disturbance
would experience. Applying Eq.(24) to the case witha
=0.01 andCs=1.0 gives a lower bound of about 1.1 forq
=0.60 and about 11 forq=0.0, while the actual values shown
in Fig. 5 are 1.3 and 13, respectively. Note that since an
applied disturbance with wave numberq=0.0 does not vary
in the transverse direction, such a disturbance is incapable of
inducing instability.

The results of the transient analysis demonstrate that the
ordering of the modes of different wave numbers according
to amplification corresponds to the asymptotic results from
the modal theory because the duration of nonmodal growth is
short. These results also demonstrate a smooth, rapid transi-
tion to the asymptotic behavior predicted from the modal
theory and therefore that the effects of the non-normality of
the disturbance operators are slight.

The results of this investigation of a slip model agree well
with results for models employing structured and unstruc-
tured precursor films to alleviate the contact line singularity
[1,3,4]. Significant transient amplification is not found in any
of the models for thermally driven films. The slip model has
the smallest amount of transient amplification because all
applied disturbances are truncated at the physical end of the
domain at the contact line. More amplification occurs in the
precursor film models because the applied disturbances can
extend far into the precursor film and thus, as they are con-
vected toward the apparent contact line, can repeatedly ex-
cite the most vulnerable area of the spreading film near the
forward portion of the capillary ridge. This larger amount of
transient amplification is still insufficient to invalidate the
results of the modal theory, and plots of the pseudospectra
for these models are similar to those for the slip model in
that they do not exhibit a large degree of non-normality.
Most significantly, the modal predictions of the slip model
and flat precursor film model agree quantitatively for an ap-
propriate choice of the contact slope and slip coefficient. The
dispersion curves for the two models can be made to overlap
almost exactly for the unstable wave numbersq&0.55. This
agreement between the slip and precursor film models was
also found for coating flows driven by a body force[5].
Results from a model employing a structured precursor film

governed by van der Waals forces[4] cannot be directly
compared to the other two models because the inclusion of
van der Waals forces is an additional stabilizing influence
that slightly diminishes the growth rate of disturbances, but
the qualitative results agree well. Finally, all three models
predict an identical wavelength for the most unstable distur-
bance, and this value agrees quite well with published ex-
perimental results[1,17,24].

VII. CONCLUSION

The transient behavior of disturbances to and linear sta-
bility of thin, thermally driven films with slip at the liquid-
solid interface have been investigated. The optimal distur-
bances for both asymptotically stable and unstable wave
numbers initially have a peak of maximum amplitude at the
contact line. Optimal disturbances that induce instability also
broaden to encompass the entire capillary ridge. Ast→` the
evolved disturbances asymptote to the eigenfunction found
from modal analysis, while the optimal initial disturbances
asymptote to the corresponding eigenfunction of the adjoint
of the linearized disturbance operator. Based on Figs. 5–8,
this asymptotic limit is attained by a dimensionless timet
<10–20, which corresponds to the timescale reported in the
literature for the onset of rivulet formation[17–19]. Al-
though the slip model strongly influences the shapes of the
optimal disturbances to the film, convergence of the distur-
bance growth rate to the asymptotic value found from the
modal theory occurs rapidly for all disturbances. The limited
transient amplification is insufficient to induce significant
nonlinear effects, and this conclusion is reinforced by exami-
nation of plots of the pseudospectra of the linearized distur-
bance operator. For an appropriate choice of slip coefficient
and contact slope, the base-state profiles and modal predic-
tions of the flat precursor film model can be reproduced. The
results from this study, along with those from two other in-
vestigations[3,4], indicate that the transient amplification of
disturbances is relatively unimportant for thermally driven
films and that, regardless of the contact line model, the non-
normality of the linearized disturbance operator is insuffi-
cient to invalidate the modal results.

Note added in proof. After this work was completed, the
authors became aware of an independent study of thermally
driven films subject to boundary slip[25]. The different
boundary conditions applied to the disturbance fields in Ref.
[25] result in adjoint eigenfunctions rather different from
those presented here.
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